

Chlorthal Treatment Options Review 14th May 2015

Introduction

- Attendees.
 - Introductions.
 - Attendance list.
- \circ $\,$ Health and safety.
 - Fire Alarms.
 - Welfare.
- \circ Timetable.
 - Coffee.
 - Lunch.

Background

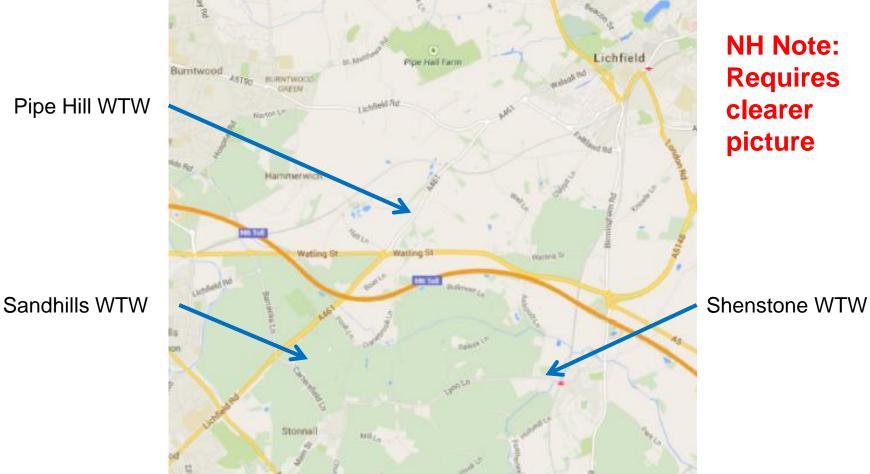
- The pesticide chlorthal was detected at levels above the regulatory limit (0.1ug/l) in the sources of four WTWs.
 - Pipe Hill WTW.
 - Slade Heath WTW
 - Shenstone WTW
 - Sandhills WTW
- Chlorthal is a metabolite of the herbicide chlorthal-demethyl which is no longer approved for use in the EU.
- The nitrate treatment plant at Pipe Hill WTW has been found to remove chlorthal from the raw water. The works has remained in service at a reduced flow (4MI/d) with all the flow passing through the ion exchange plant.
- Slade Heath WTW (4MI/d) was removed from service.

Background cont.

- Somerford WTW (2MI/d) which relies on Slade Heath WTW for blending has also been removed from service.
- Shenstone WTW and Sandhills WTW are currently 'out of service' and require investment to make operational.
- WRc was employed to carry out laboratory and pilot scale tests to assess the potential for the following treatment processes for chlorthal removal.
 - Granular activated carbon.
 - Ultraviolet (UV) light irradiation also with hydrogen peroxide.
 - Ozonation and ozonation with hydrogen peroxide.
- Imtech has been employed to assess the options for returning Pipe Hill, Shenstone, Sandhills, Slade Heath and Somerfield WTWs to service.

Summary of Sites.

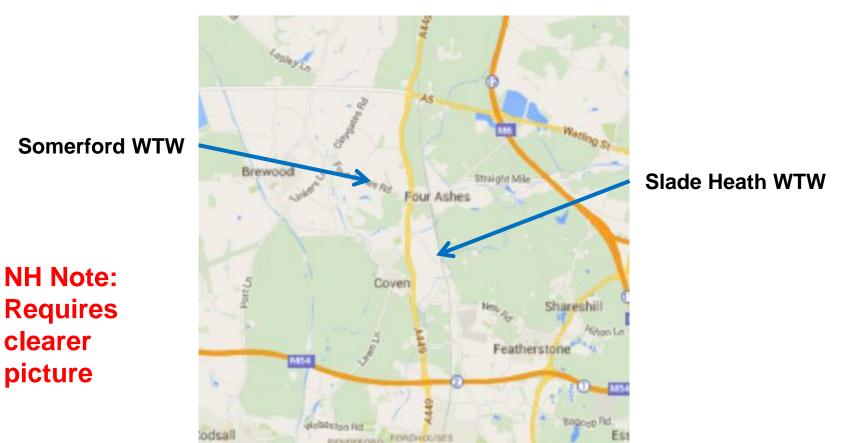
- Pipe Hill WTW
 - Output 11 MI/d.
 - Raw water currently has up to 0.9 μg/l of chlorthal in the source water.
 - Chlorthal currently removed in ion exchange plant.
- o Shenstone WTW
 - Output 5.5 Ml/d.
 - Only used as a "drought" / high demand source and therefore run infrequently.
 - Recent raw water samples contain up to 0.1µg/l of chlorthal.
 - Raw Water also contains high levels of nitrate and trichloroethene.
 - Part of nitrate strategy for AMP6.


Summary of Sites cont..

- o Sandhills WTW
 - Potential Output 5-6 Ml/d (Design for 3Ml/d)
 - Out of operation for approximately 10 years.
 - Historical issues with nitrate.

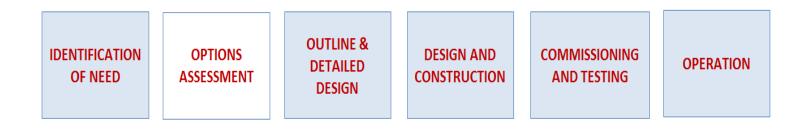
Location of sites

NH Note. Insert diagram of distribution system


Summary of Sites cont.

- Slade Heath WTW
 - Output 4 Ml/d.
 - Source water contains concentrations of chlorthal up to 3.3µg/l.
 - Raw water contain manganese (up to 180µg/l) which is controlled by oxidation and filtration.
 - Site currently switched off.
- Somerford WTW
 - Output 2 MI/d.
 - No Chlorthal detected but source has high levels of sodium (>250mg/l), chloride (>300mg/l) and arsenic c.15µg/l which are controlled by blending with Slade Heath treated water.
 - Site currently switched off due to high chlorthal concentrations at Slade Heath.

Location of sites


NH Note: Insert diagram of distribution system

Approach to Options Assessment

• Phases involved in scoping and delivering the schemes

- Identify the treatment options available for each site and to develop costed strategies for each group of sites.
- Little information is currently available on the treatment of chlorthal apart from the work commissioned by South Staffs Water (SSW) from the WRc.
- Experimentation work will be required in providing the necessary assurance over the both the effectiveness of treatment and how to operate the process within a WTW.

Approach to Options Assessment

- Our approach is for any experimental work to be broken down into two separate phases to ensure any work carried out is both necessary and focused.
- The first phase of experimental work will focus on gathering sufficient information to generate high level CAPEX and OPEX estimates for the various technologies and thus establish if they are viable and cost effective.
- A second phase of experimental work will then only be carried out on a technology to provide sufficient information to confirm key design information and to provide assurance on the controllability and operability of that treatment process.

Structure of Workshop.

- Based upon traditional 'gap analysis' approach to problem solving.
- Workshop Structure.
 - Water Resources and Water Demand.
 - Raw water quality.
 - Treated water quality.
 - Available treatment options.
 - Results from initial testing programme.
 - Impact on potential plant design.
 - High level CAPEX and OPEX costs.
 - Rationalising choice for different supply systems.
 - Discussion on strategy affordability, resilience, operability.
 - Information gaps and future testing requirements.

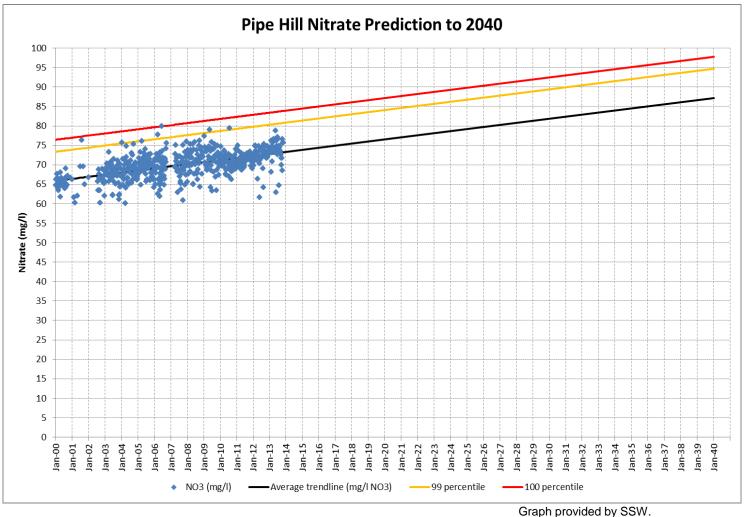
Water Resources and Future Water Demand.

Raw Water Quality.

Pipe Hill WTW

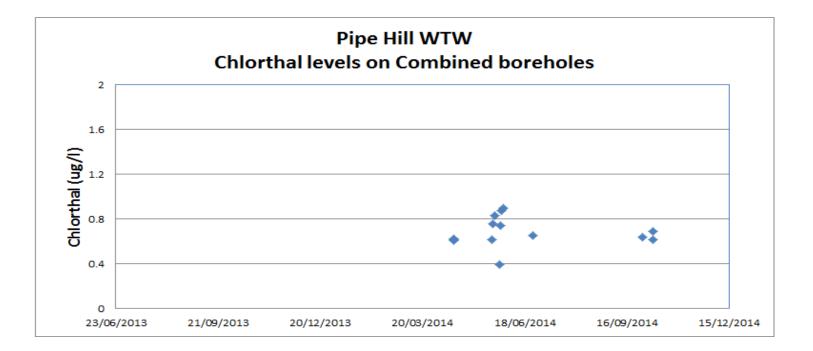
Historical Data 2009 -2014

Parameter	Units	Min	Ave	Max
Turbidity	NTU	<0.08	0.15	0.65
Colour	Hazen			
тос	mg/l	0.3	0.88	2.3
рН		6.64	7.49	8.11
Alkalinity	mg/l as (HCO3)	100	172	246
Total Hardness	mg/l (as Ca)	107	126	144
Conductivity	uS	234	624	713 ⁽¹⁾
Nitrate	mg/l as NO3	14.3	70.8	79.4
Sulphate	mg/l	56.7	74.5	95.7
Chloride	mg/l	45	51	131 ⁽¹⁾
Sodium	mg/l			
Iron	ug/l	<4	10	23
Manganese	ug/l	<4	5	11
Chlorthal	ug/l	0.394	0.697	0.895


•Single sample with 12000uS/cm and 4410mg/l Cl removed from dataset.

•Single sample with 6.65mg/I TOC removed from dataset

Pipe Hill WTW



18

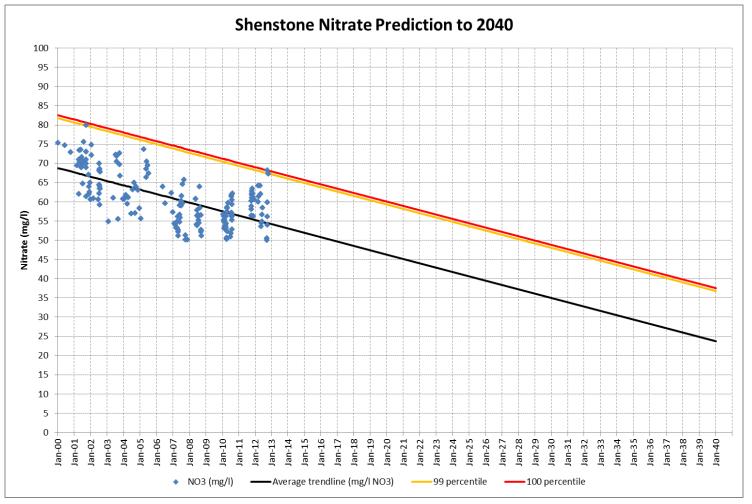
Pipe Hill WTW – Raw Water Quality

Pipe Hill WTW

- Water Quality Risks
 - Nitrate (increasing trend)
 - Chlorthal
 - Turbidity (presumably on start up)
 - Pathogens
- Disinfection Requirements
 - Marginal chlorination only

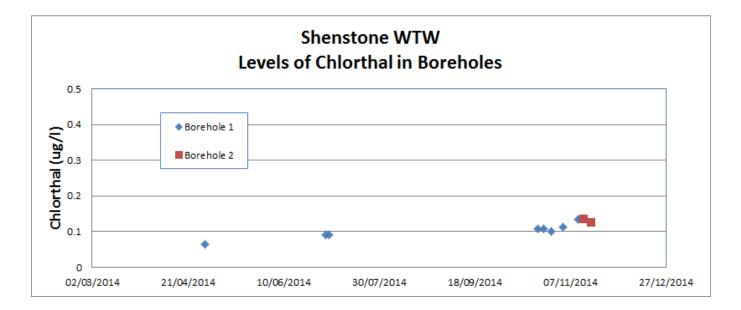
Raw Water Quality – Shenstone WTW

Historical Data 2009 -2014


Parameter	Units	Min	Ave	Max
Turbidity	NTU	<0.03	0.27	0.79
Colour	Hazen			
тос	mg/l	0.65	1.0	4.04
рН		6.5	7.4	7.7
Alkalinity	mg/l as (HCO3)	168	196	242
Total Hardness	mg/l (as Ca)	83	100	112
Conductivity	uS	443	661	1120 (1)
Nitrate	mg/l as NO3	38	55	68
Sulphate	mg/l	37	39	41 ⁽¹⁾
Chloride	mg/l	22.8	82	236 (1)
Sodium	mg/l	16	53	139
Iron	ug/l	<7	16	70
Manganese	ug/l	2.1	1.6	7
Chlorthal	ug/l	0.064	0.107	0.134
Atrazine	ug/l	0.022	0.051	0.074

•Sample on 17/12/2009 with >1600uS/cm from both boreholes removed from dataset

Shenstone WTW – Raw Water Quality



Graph provided by SSW.

Shenstone WTW – Raw Water Quality

Shenstone WTW

- Water Quality Risks
 - Nitrate (possible decreasing trend?).
 - Chlorthal.
 - Turbidity/iron (presumably on start up).
 - Atrazine (historical issue).
 - Tri-chloroethene.
 - Pathogens.
- Disinfection Requirements.
 - Enhanced disinfection with a Ct of 15mg.min/l.

Sandhills WTW

Historical Data 2009 -2014

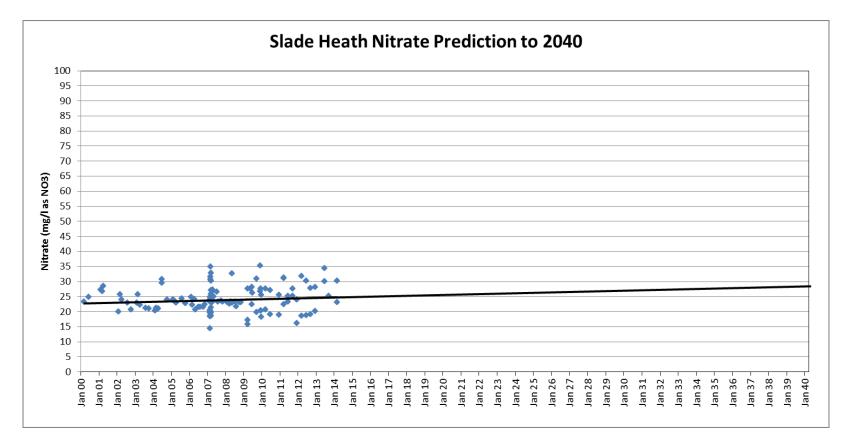
Parameter	Units	Min	Ave	Max
Turbidity	NTU	0.08	0.6	3.17
Colour	Hazen		0.9	
тос	mg/l	0.66	1.51	3.0
рН		7.25	7.38	7.6
Alkalinity	mg/l as (HCO3)	160	160.3	161
Total Hardness	mg/l (as Ca)	104	117	127
Conductivity	uS	559	624	662
Nitrate	mg/l as NO3	32	76	84
Sulphate	mg/l		87	
Chloride	mg/l	50	53	57
Sodium	mg/l			
Iron	ug/l	4	97	270
Manganese	ug/l			
Chlorthal	ug/l		1.41*	

Very limited date set (most of data is based upon 3 samples taken in 2012/3

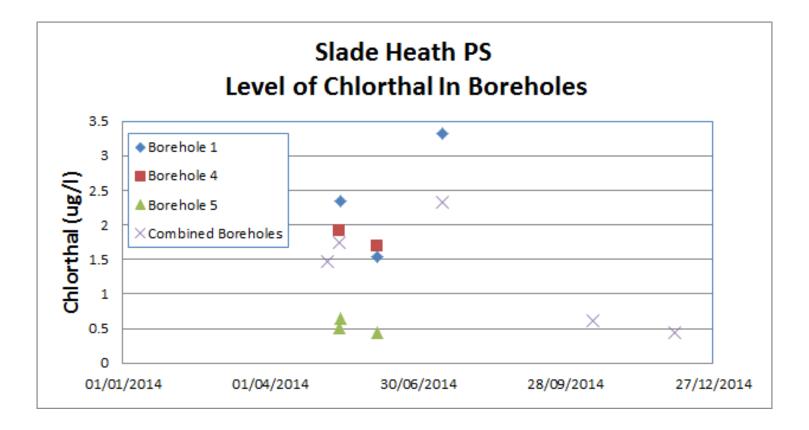
Sandhills WTW

- Water Quality Risks.
 - Nitrate (limited recent data).
 - Chlorthal (very limited data).
 - Turbidity/iron (presumably on start up).
 - Aerated water.
 - Pathogens.
- Disinfection Requirements.
 - Enhanced disinfection with a Ct of 15mg.min/l.

Raw Water Quality – Slade Heath WTW


Historical Data 2009 -2014

Parameter	Units	Min	Ave	Max
Turbidity	NTU	0.04	0.24	4.74
Colour	Hazen	0.7	1.0	1.3
тос	mg/l	0.5	0.896	3.8
рН		7.06	7.55	7.9
Alkalinity	mg/l as (HCO3)	222	250	273
Total Hardness	mg/l (as Ca)	88	111	126
Conductivity	uS	442	555	651
Nitrate	mg/l as NO3	15.9	24	35
Sulphate	mg/l	33	39	52
Chloride	mg/l	25	36	43
Sodium	mg/l	14	18	22
Iron	ug/l	4	14	44
Manganese	ug/l	67	104	180
Arsenic	ug/l	1.8	2.6	3.4
Chlorthal	ug/l	0.442	1.462	3.32


Shenstone WTW – Raw Water Quality

Slade Heath WTW – Raw Water Quality

Slade Heath WTW

- Water Quality Risks.
 - Chlorthal (variable concentrations?).
 - Manganese.
 - Turbidity .
 - Pathogens.
- o Disinfection Requirements.
 - Enhanced disinfection with a Ct of 15mg.min/l.

Raw Water Quality – Somerford WTW

Historical Data 2009 -2014

Parameter	Units	Min	Ave	Max
Turbidity	NTU	0.08	0.18	0.41
Colour	Hazen			
тос	mg/l	0.4	1.8	17.8*
рН		7.29	8.05	8.21
Alkalinity	mg/l as (HCO3)	231	253	281
Total Hardness	mg/l (as Ca)	40	43	48
Conductivity	uS	1160	1271	1800
Nitrate	mg/l as NO3	1.4	2.8	4.4
Sulphate	mg/l	51	54	57
Chloride	mg/l	239	297	346
Sodium	mg/l	12	256	386
Iron	ug/l	12	36.7	570 ⁽¹⁾
Manganese	ug/l	2	8	49 ⁽¹⁾
Arsenic	ug/l	2.4	14.75	27 (1)
Chlorthal	ug/l		<0.012	

•Single sample with max values of iron, manganese and arsenic,

Somerford WTW

- Water Quality Risks.
 - Sodium.
 - Chloride.
 - Arsenic.
 - Iron/Manganese (on start up????).
 - Pathogens.
- o Disinfection Requirements.
 - Enhanced disinfection with a Ct of 15mg.min/l.

Available Treatment Options.

Nitrate Treatment Options

- Blending.
- o Ion Exchange
 - Nitrate selective resin treatment technology of choice.
 - Counter current MIEX.
 - Weak base anion resin only pilot scale at present.
- Reverse Osmosis high power costs.
- EDR high power costs.
- Biological Denitrification operation at low temperatures?
- Chemical Denitrification not tested at full scale.

Chlorthal Treatment Options

- Blending.
- o Ion Exchange.
 - Nitrate selective resin evidence of removal at Pipehill WTW.
 - Other resins DWI approval.
- Activated Carbon.
 - GAC results from WRc accelerated tests.
 - *PAC*.
- Reverse Osmosis based upon membrane pore size.
- Advanced oxidation WRc tests showed ozone to be ineffective and UV oxidation to require very high doses.

Tri-chloroethene Treatment Options

- $\circ~$ Air Stripping.
- GAC.

Sodium and Chloride Treatment Options

- \circ Blending.
- Reverse Osmosis.
- EDR.
- Thermal desalination.

Arsenic Treatment Options

- \circ Blending.
- Granular Ferric Hydroxide (GFH).
- Ferric Sulphate/Filtration as Fradley WTW.
- Reverse Osmosis.
- Electrodialysis Reversal (EDR).
- o lon exchange

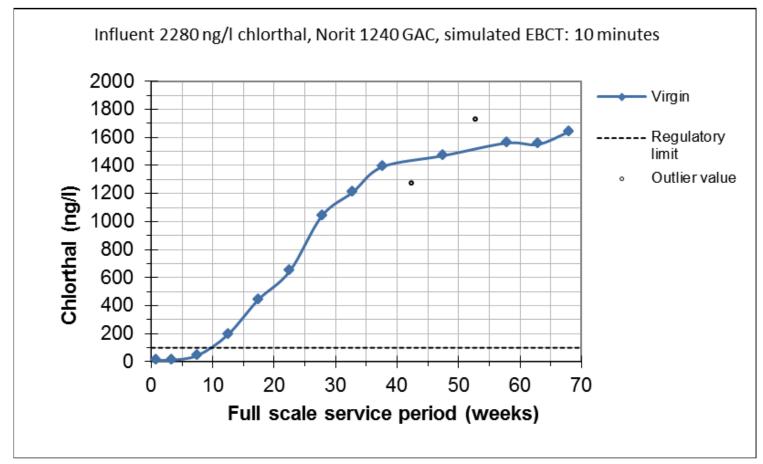
Initial testing programme.

Testing programme

- Activated Carbon.
 - Determine dose of PAC required for Chlorthal removal at Pipe Hill, Slade Heath and Shenstone.
 - Investigate performance of different PAC types.
- Nitrate Selective Resin.
 - Confirm nitrate selective resin removes chlorthal from the raw water at Slade Heath WTW and Shenstone WTW.
 - Confirm chlorthal removal occurs with both Purolite and Dow nitrate selective resins.
 - Determine what happens beyond nitrate breakthrough.
 - Balance chlorthal removed from raw water with levels in regen waste.

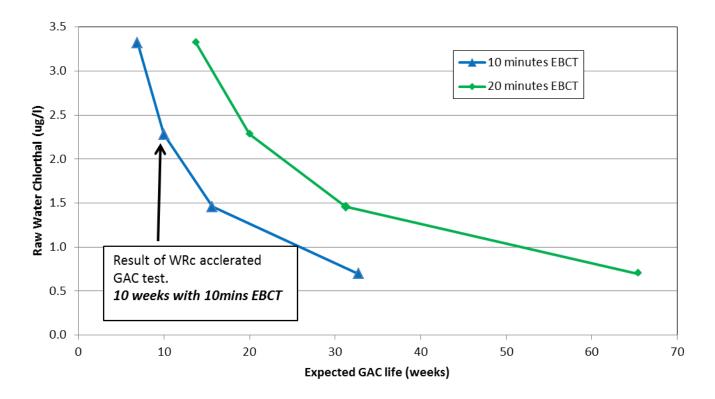
Testing programme

- MIEX.
 - Confirm chlorthal removal by MIEX resin.
 - Carry out breakthrough tests with water from Slade Heath WTW.
- Arsenic removal.
 - Confirm removal by GFH media and precipitated ferric hydroxide.
 - Analysis of key raw water parameters.



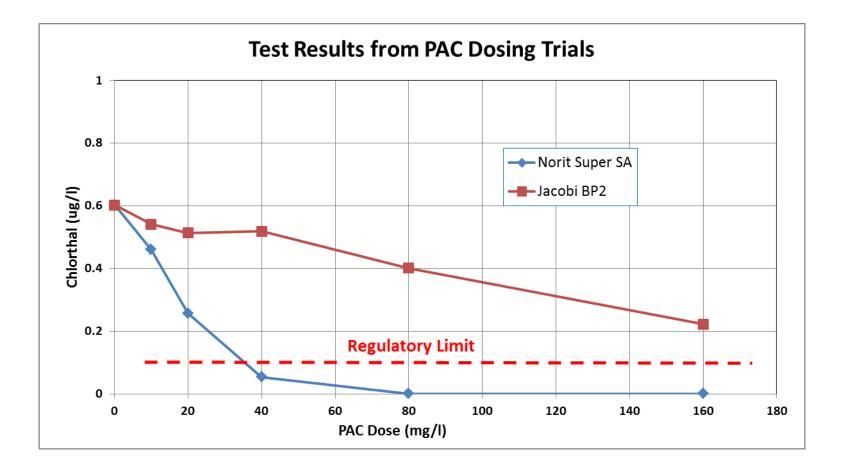
WRc GAC Tests

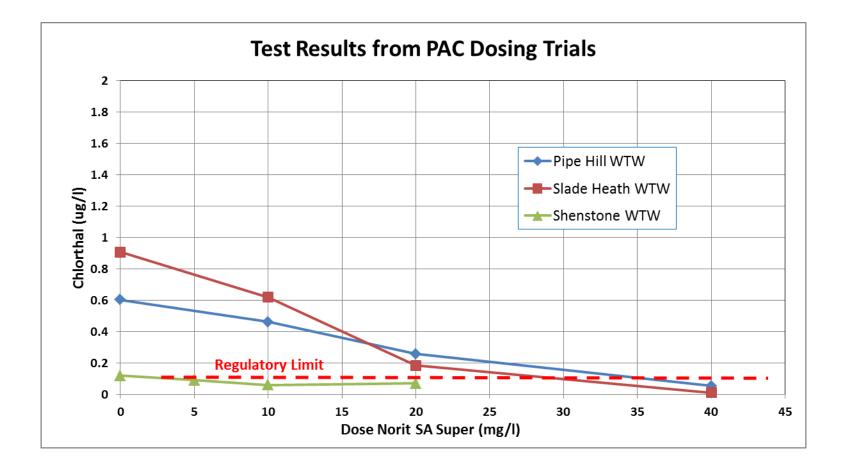
GAC – Rapid Column Test (RCT) Breakthrough of chlorthal (Norit 1240 GAC)



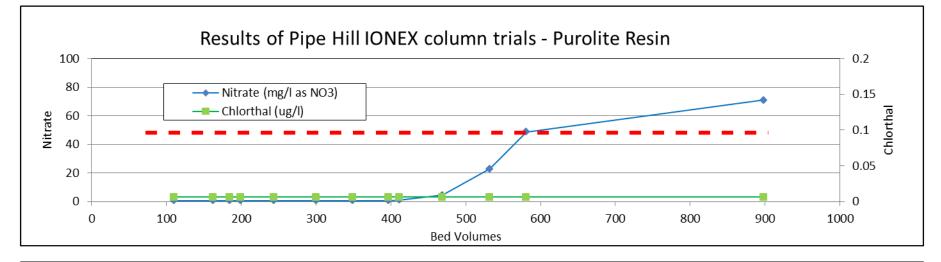
GAC – Rapid Column Test (RCT)

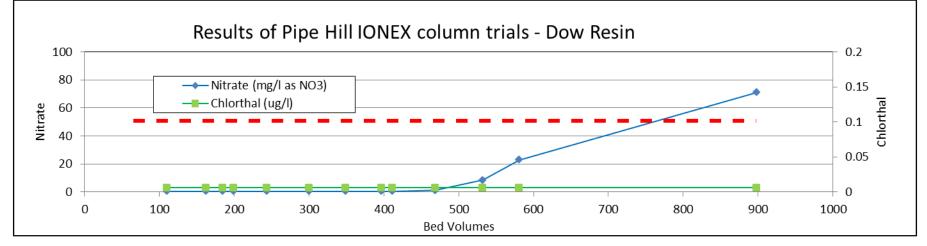
Interpretation of WRc accelerated GAC test.



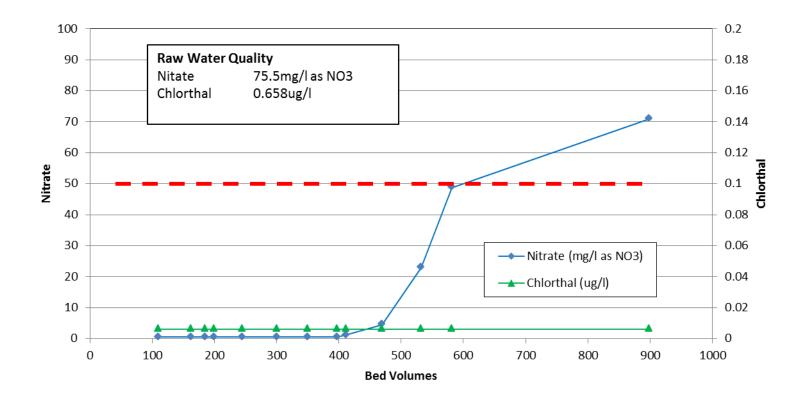


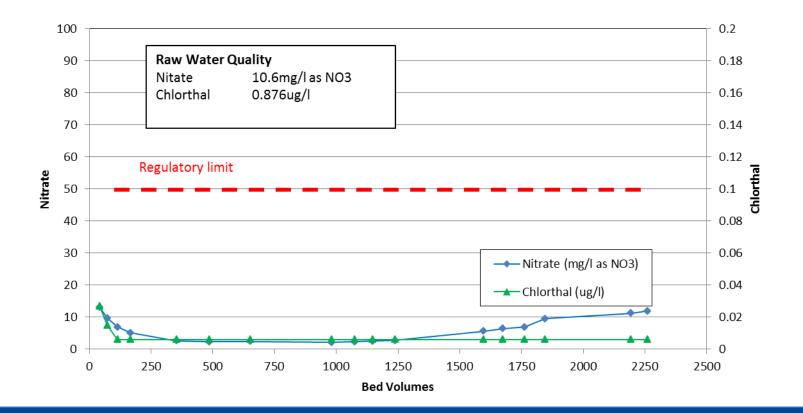
- Chlorthal concentration in raw water sample from Slade Heath WTW (0.907ug/l) was lower than historical average (1.462ug/l).
- Graph suggest that PAC dose required to achieve regulatory limit for both Slade Heath and Pipe Hill WTWs is 30-40mg/l.
- For Shenstone WTW tests indicated that a dose of 5-10mg/l is required to meet the regulatory limit for chlorthal.
- Norit SA Super performed far better than Jacobi BP2 in tests.



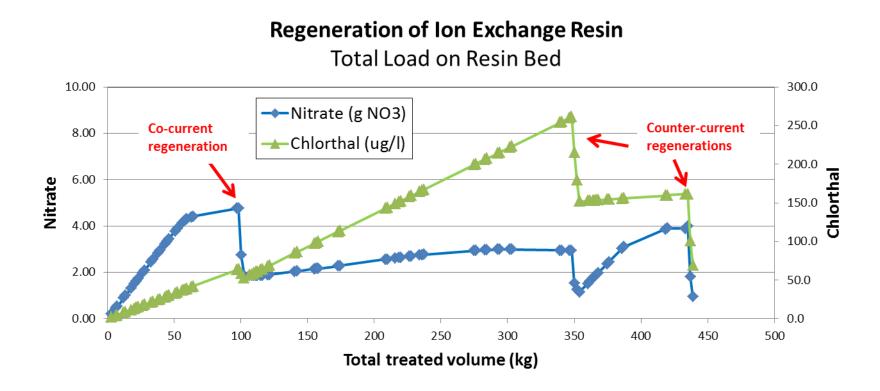


Nitrate Selective Resin Column Trials




Results of Pipe Hill IONEX column trials


Results of Slade Heath IONEX column trials



Results of Shenstone IONEX column trials

Arsenic Removal Tests

	Arsenic Removal					
		Arsenic				
0	Somerford WTW raw water	16ug/l				
0	Post GFH Treatment	<0.1ug/l				
0	Ferric sulphate addition					
	1mg/l as Fe	8.9ug/l.				
	2mg/l as Fe	5.8ug/l				
	 3mg/l as Fe 	2.6ug/l				

Impact on Potential Plant Design

Design Consideration for Full Scale Plants

- o PAC
 - Membrane suppliers concerned over impact of PAC on membrane life.
 - High doses required for Slade Heath and Pipe Hill mean clarification required upfront of Rapid Gravity Filters (RGFs).
 - Filters need to be designed for additional solids loading.
 - Sludge handling and disposal requires careful consideration.
- Nitrate Selective Resin (IONEX).
 - Resin has limited capacity for chlorthal.
 - Counter current regeneration required to remove chlorthal from the resin.
 - Limited opportunities for waste/salt minimisation due to high % removal requirement for chlorthal.

Design Consideration for Full Scale Plants

- o GAC
 - Raw water concentration of chlorthal and EBCT impacts on regen frequency.
 - Need to allow for treatment of 'blackwater' produced during GAC delivery/removal.
 - Need to consider how beds are conditioned/tested prior to going into service.

Design Consideration for Individual Sites

- Slade Heath WTW
 - Manganese removal by existing chlorination and filtration.
 - Preferable to de-chlorinate prior to new GAC and ion exchange plants.
 - Upgrades to existing sodium hypochlorite and sodium bisulphite dosing systems may be required to accommodate higher doses.
 - A chlorine residual of 0.85mg/l is required to give a CT of 15mg.min/l in existing contact tanks.
- Somerford WTW
 - No nearby sewer is available for effluent disposal.
 - Work is ongoing to understand the source of salinity within the existing boreholes.
 - A CT of 15mg.min/l can be achieved with a free chlorine residual of 0.2mg/l in the main to Slade Heath WTW.

Design Consideration for Individual Sites

• Pipe Hill WTW

- The existing borehole pumps are fixed speed and restrict the plant flow to a nominal 4, 8 and 11MLD.
- Boreholes 1, 2 and 4 are over 100 years old and it has been recommended that at least one be replaced.
- The existing nitrate plant is close to the end of its asset life.
- Raw water nitrate levels are increasing beyond the design of the existing plant.
- The source requires only marginal chlorination. The contact tank provides a CT of 4.1mg.min/l with the current chlorine residual of 0.4mg/l.

Design Consideration for Individual Sites

- Shenstone WTW
 - The borehole is at high risk of collapse and it has been recommended that it is replaced.
 - The existing nitrate plant is close to the end of its asset life
 - A chlorine residual of 1.3mg/l would be required to achieve a CT of 15mg.min/l in the existing contact tank.
- Sandhills WTW
 - The site can provide an argumentation flow of 3MI/d.
 - The existing main to Pipe Hill provides a CT of 15mg.min/l assuming a chlorine residual of 0.4mg/l is maintained.

Assumptions used in developing CAPEX and OPEX costs

Nitrate Selective Resin

- Run time based upon nitrate only.
- OPEX values include costs relating to changing nitrate trends.
- o Salt consumption
 - 120g/l for chlorthal/nitrate removal.
 - 160g/l for nitrate removal.
- Effluent volumes based upon values provided by equipment suppliers.

Granular Activated Carbon

 Carbon life based upon extrapolation of WRc accelerated tests and average raw water chlorthal concentrations using an EBCT of 20minutes.

Assumptions used in developing CAPEX and OPEX costs

Powdered Activated Carbon

Dose based upon jar test results.

-extrapolate for average raw water conditions

-allow for enhanced removal by PAC in sludge (-30%).

Sodium and Chloride Removal

Based upon treatment of side stream only.

Disposal stream available for waste.

Arsenic removal

Arsenic remains as Arsenic (V) after de-chlorination.

Media replacement based upon prediction from supplier.

Assumptions used in developing CAPEX and OPEX costs CAPEX

Cost based upon budget quotes and cost models.

Values do not include SSW costs.

NPV

25 years at 8.5% discount.

OPEX

Power	£0.086/kWh.
Salt	£85/tonne.
GAC	£374/tonne.
Effluent	£528/m3.
others	typical costs across industry.

Assumptions used in developing CAPEX and OPEX costs

Pumping

Delivery Heads (above EHFL)

•	Slade Heath WTW	97m
•	Somerford WTW	110m
•	Sandhills WTW	108m
•	Shenstone WTW	129m
•	Pipe Hill WTW (Hopwas)	27m
•	Pipe Hill WTW (Barr Beacon)	120m

 \circ Pump efficiency of 70%.

Options Considered

Option 1 New 4MI/d ion exchange plant for treating chlorthal in new building.

Upgrades to existing sodium hypochlorite and sodium bisulphite dosing systems to accommodate increased demand. Effluent disposal to local sewer.

Option 2 New 4MI/d GAC plant including dirty wash-water treatment system.

Upgrades to existing sodium hypochlorite and sodium bisulphite dosing systems to accommodate increased demand.

 Option 3 New PAC, ferric and polyelectrolyte dosing systems. New 4MI/d clarifier
 New RGF's (2 off) to increase filtration capacity.
 New dirty wash water treatment plant including sludge treatment and storage.

Options Considered

- Option 4 New 4MI/d MIEX plant for treating chlorthal.
 New pumping station to relift treated water through manganese filters.
 Effluent disposal to sewer.
- **Option 5** Two temporary GAC units operating at 1.8MI/d each.

CAPEX, OPEX and NPV values of Options

	Option 0	Option 1	Option 2	Option 3	Option 4	Option 5
Description	Historical (normalised)	Ion Exchange Plant	GAC Plant	PAC Dosing	MIEX Plant	Temporary GAC Plant
OUTPUT	4	4	4	4	4	3.6
CAPEX (£M)		2.97	2.84	4.69	3.71	
OPEX (£k/yr)	123	171	152	354	145	317
Power (treatment) (£/MI)	42.0	51.1	44.0	54.2	52.5	42.5
Power (HL pumping) (£/MI)	34.6	34.6	34.6	34.6	34.6	34.6
Chemicals (£/Ml)	7.6	28.6	11.2	9.7	11.8	11.2
Effluent (£/Ml)		2.6	0.1	31.3	0.5	
Carbon (£/Ml)			14.2	113		153
OPEX(£/MI)	84.2	116.9	104.0	242.8	99.4	241.3
NPV (£M)		4.66	4.40	7.99	4.92	3.28

Conclusions

- Nitrate selective resin and GAC have similar CAPEX and OPEX costs based upon the assumptions used.
- MIEX has a lower OPEX than nitrate selective resin but higher CAPEX and NPV.
- PAC CAPEX and OPEX are far higher than the other options.
- A temporary GAC system may be attractive if used for 'drought periods' only.

Somerford WTW

Somerford WTW

Options Considered

Option 1New 2MI/d RO plant for treating sodium chloride and arsenic.New phosphoric acid dosing system.

New effluent pumping station and discharge pipe to Four Oaks.

Option 2New 2MI/d EDR plant for treating sodium chloride and arsenic.New phosphoric acid dosing system.

New effluent pumping station and discharge pipe to Four Oaks.

Option 3 New borehole.

New GFH plant treating arsenic only. New dirty wash water treatment plant.

New phosphoric acid dosing system.

Somerford WTW

CAPEX, OPEX and NPV Values of Options

	Option 0	Option 1	Option 2	Option 3
Description	Blending with Slade Heath (normalised)	RO Plant	EDR Plant	New borehole and GFH Plant
OUTPUT	2	1.8	1.9	2
CAPEX (£M)		3.29	3.39	1.65
OPEX (£k/yr)	71	157	120	93
Power (treatment) (£/Ml)	88.8	121.4	93.6	97.0
Power (HL pumping) (£/Ml)	00.0	40.2	40.2	97.0
Chemicals (£/MI)	5	16	10.8	29.4
Effluent (£/MI)		61.6	27	0.9
Carbon (£/Ml)				
OPEX(£/MI)	93.8	239.2	171.6	127.3
NPV (£M)	0.73	4.66	4.4	2.48

Somerford WTW

Conclusions

- Reverse Osmosis and EDR both have very high operating costs and generate large waste stream of brine.
- Granular Ferric Hydroxide OPEX costs are comparable to the predicted operating cost of GAC/Ion Exchange at Slade Heath WTW (but no 'cheap' extra water from blending).

Slade Heath WTW and Somerford WTW

Option Combinations

Slade Heath and Somerford WTW

Combinations considered

- Scenario 0 Historical operation of sites.
- **Scenario 1** New 4MI/d ion exchange plant at Slade Heath WTW for treating chlorthal.

Blending of water from Somerford WTW (2MI/d) to reduce sodium, chloride and arsenic.

Scenario 2 New 4MI/d GAC plant at Slade Heath WTW for treating chlorthal.

Blending of water from Somerford WTW (2 Mld) to reduce sodium, chloride and arsenic.

- Scenario 3 New 2MI/d EDR plant at Somerford WTW to reduce sodium, chloride and arsenic.
- **Scenario 4** New borehole at Somerford WTW (to reduce salinity) and new 2MI/d GFH plant to remove arsenic.

Slade Heath WTW/Somerford WTW

Scenario 0 (historical)

	Slade Heath	Somerford	Hampton Load	Total
Description	Manganese Filters	Blending	Conventional surface water treatment	
OUTPUT	4	2		6
CAPEX (£M)				
OPEX (£k/yr)	123	68		191
Power (treatment) (£/MI)	42.0	00.0		
Power (HL pumping) (£/Ml)	34.6	88.8		
Chemicals (£/Ml)	7.6	5		
Effluent (£/Ml)				
Carbon (£/MI)				
OPEX(£/MI)	84.2	93.8	0.0	87.4

NH Note – Can include Hampton Load cost if provided by SSW

Slade Heath WTW/Somerford WTW Scenario 1

	Slade Heath	Somerford	Hampton Load	Total
Description	IONEX Plant	Blending	Conventional surface water treatment	
OUTPUT	4	2		6
CAPEX (£M)	2.97			2.97
OPEX (£k/yr)	171	68		239
Power (treatment) (£/Ml)	51.1	00.0		
Power (HL pumping) (£/Ml)	34.6	88.8		
Chemicals (£/MI)	28.6	5		
Effluent (£/Ml)	2.6			
Carbon (£/Ml)				
OPEX(£/MI)	116.9	93.8	0.0	109.2

Slade Heath WTW/Somerford WTW Scenario 2

	Slade Heath	Somerford	Hampton Load	Total
Description	GAC adsorbers	Blending	Conventional surface water treatment	
OUTPUT	4	2		6
CAPEX (£M)	2.84			2.84
OPEX (£k/yr)	152	68		220
Power (treatment) (£/Ml)	44.0	00.0		
Power (HL pumping) (£/Ml)	34.6	88.8		
Chemicals (£/Ml)	11.2	5		
Effluent (£/Ml)	0.1			
Carbon (£/MI)	14.2			
OPEX(£/MI)	104.0	93.8	0.0	100.6

Slade Heath WTW/Somerford WTW

Scenario 3

	Slade Heath	Somerford	Hampton Load	Total
Description		EDR	Conventional surface water treatment	
OUTPUT		1.9		2
CAPEX (£M)		3.39		3.39
OPEX (£k/yr)		119		119
Power (treatment) (£/Ml)		93.6		
Power (HL pumping) (£/Ml)		40.2		
Chemicals (£/Ml)		10.8		
Effluent (£/Ml)		27		
Carbon (£/Ml)				
OPEX(£/MI)		171.6	0.0	171.6

Slade Heath WTW/Somerford WTW Scenario 4

	Slade Heath	Somerford	Hampton Load	Total
Description		New borehole and arsenic removal plant	Conventional surface water treatment	
OUTPUT	0	2		2
CAPEX (£M)		1.65		1.65
OPEX (£k/yr)		93		93
Power (treatment) (£/Ml)		97.0		
Power (HL pumping) (£/Ml)		97.0		
Chemicals (£/MI)		29.4		
Effluent (£/Ml)		0.9		
Carbon (£/Ml)				
OPEX(£/MI)		127.3	0.0	127.3

Slade Heath WTW/Somerford WTW Scenario 5

	Slade Heath	Somerford	Hampton Load	Total
Description	Femporary GAC adsorbers	Blending	Conventional surface water treatment	
OUTPUT	3.6	2		6
CAPEX (£M)				
OPEX (£k/yr)	317	68		386
Power (treatment) (£/Ml)	42.5	00.0		
Power (HL pumping) (£/Ml)	34.6	88.8		
Chemicals (£/MI)	11.2	5		
Effluent (£/Ml)				
Carbon (£/Ml)	153			
OPEX(£/MI)	241.3	93.8	0.0	188.6

Summary of scenarios

	Scenario 0	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Description	Pressent operation	New IONEX Plant at Slade Heath WTW	New GAC Plant at Slade Heath WTW	New EDR plant at Somerford WTW	New GFH plant at Somerford WTW	New temporary GAC Plant at Slade Heath WTW
OUTPUT (MI/d)	6	6	6	2	2	6
Slade Heath WTW	4	4	4	0	0	3.6
Somerford WTW	2	2	2	1.9	2	2
Hampton Load WTW	0	0	0	0	0	0
CAPEX (£M)		2.97	2.84	3.4	1.7	
OPEX (£k/yr)	191	239	220	120	93	386
OPEX(£/MI)	87.4	109.2	100.6	173.7	127.3	188.6

Discussion

Discussion

- Required resilience.
- Affordability.
- Operability.

Options considered.

- Option 1. New 3MI/d borehole pumps to allow site to pump to waste and provide 3MLD argumentation flow.300m of new buried pipe from site to new discharge point.
- Option 2. New 6MI/d borehole pumps to allow site to pump to waste and provide 3MLD argumentation flow.
 300m of new buried pipe from site to new discharge point. New 3MI/d ion exchange plant to remove chlorthal and nitrate. New stripping tower to remove excess air from borehole water. New booster pump station. New sodium hypochlorite dosing systems for disinfection in main to Pipe Hill WTW.
 - New waste pipe to Shenstone WTW for effluent disposal.

Options considered.

Option 3. New 6MI/d borehole pumps to allow site to pump to waste and provide 3MLD argumentation flow.
300m of new buried pipe from site to new discharge point New 3MI/d GAC plant for chlorthal removal including waste water treatment.
New stripping tower to remove excess air from borehole water. New booster pump station.
New sodium hypochlorite dosing systems for disinfection in main to Pipe Hill WTW.
Option 4. New 6MI/d borehole pumps to allow site to pump to waste and

Option 4. New 6MI/d borehole pumps to allow site to pump to waste and provide 3MLD to Pipe Hill WTW for treatment. 300m of new buried pipe from site to new discharge point.

CAPEX, OPEX and NPV values of options

	Option 1	Option 2	Option 3	Option 4
Description	3MI/d run to	IONEX Plant	GAC Plant	3MI/d Pump
	waste.	+ Run to waste	+ Run to waste	Station + Run to
				waste
OUTPUT	0	3	3	3
CAPEX (£M)	0.42	4.76	4.69	0.7
OPEX (£k/yr)	22	164	130	42
Power (treatment) (£/Ml)	19.8	63.0	59.4	37.9
Power (HL pumping) (£/Ml)		38.8	38.8	
Chemicals (£/MI)		40.0	5.5	
Effluent (£/MI)		5.6	0.2	
Carbon (£/Ml)			14.5	
OPEX(£/MI)	19.8	147.4	118.4	37.9
NPV (£M)	0.62	6.08	5.66	1.08

Conclusions

- The water level in the borehole will impact on the pumping cost of providing an argumentation flow from Sandhills WTW.
- The increased raw water nitrate concentration in the raw water increase the relative OPEX costs of ion exchange against GAC
- For GAC option need a large supply of low nitrate water for dilution of nitrate.

Options considered

- Option 1New borehole on land adjacent to current site.New 2.0Ml/d ion exchange plant treating nitrate only.Replacement high lift pumps
- Option 2 New borehole on land adjacent to current site.
 New stripping tower for TCE removal.
 New 5.5Ml/d ion exchange plant treating nitrate and chlorthal.
 New treatment building local to borehole with access road
 Replacement high lift pumps.
- Option 3 New borehole on land adjacent to current works. New 5.5MI/d GAC plant located in new building local to borehole New dirty wash water treatment facilities. Replacement booster pump.

Options Considered cont.

- Option 4 New borehole on land adjacent to current works. New stripping tower for TCE removal. New 5.5Ml/d pumping station to transfer water to Pipe Hill WTW.
 Option 5 New borehole on land adjacent to current
- **Option 5** New borehole on land adjacent to current.
 - New stripping tower for Tri-chloroethene removal.
 - New UV disinfection plant.
 - New hypochlorite dosing system.
 - Replacement booster pump.

CAPEX, OPEX and NPV values of options.

	Option 1	Option 2	Option 3	Option 4	Option 4
Description	2MI/d IONEX Plant	6MI/d IONEX Plant	6MI/d GAC Plant	TCE removal and PS to Pipe Hill	TCE removal and disinfection
OUTPUT	5.5	5.5	5.5	5.5	5.5
CAPEX (£M)	4.64	5.20	3.94	4.18	2.81
OPEX (£k/yr)	209.2	242.3	180.5	63.0	164.0
Power (treatment) (£/Ml)	34.7	38.9	29.1	31.4	30.1
Power (HL pumping) (£/Ml)	46.1	46.1	46.1		46.1
Chemicals (£/MI)	20	28.8	5.5		5.5
Effluent (£/Ml)	3.4	6.9	0.2		
Carbon (£/Ml)			9		
OPEX(£/MI)	104.2	120.7	89.9	31.4	81.7
NPV (£M)	6.55	7.39	5.49	4.5	4.28

Conclusions

- The OPEX costs for treating nitrate/chlorthal are cheaper than at Sandhills WTW due to lower nitrate concentration in the raw water.
- The treatment with GAC could be attractive if a suitable supply of blending water is available (Seedy Mill WTW or Pipe Hill WTW)
- Further OPEX saving may be available if the water is blended for both nitrate and chlorthal.

Options Considered

Option 1 New borehole.

New 11MI/d ion exchange plant for treating nitrate and chlorthal. Relocation of current generator.

New booster pump station for pumping to Hopwas reservoir.

Option 2 New borehole.

New 11MI/d GAC plant for treating chlorthal only.

New dirty wash water treatment plant

New booster pump station for pumping to Hopwas reservoir.

Option 3 New borehole.

New 11Ml/d combined ion exchange and GAC plant for treating nitrate and chlorthal.

New booster pump station for pumping to Hopwas reservoir.

Options Considered

Option 4 New borehole.

New 14MI/d ion exchange plant for treating water from Pipe Hill and Sandhills boreholes for nitrate and chlorthal.

New UV disinfection plant.

New booster pump station for pumping to Hopwas reservoir.

Option 5 New borehole.

New 19MI/d ion exchange plant for treating water from Pipe Hill, Sandhills and Shenstone boreholes for nitrate and chlorthal. New UV disinfection plant.

New/upgraded booster pump stations for pumping increased output to Hopwas and Barr Beacon reservoirs.

Option 6 New borehole.

New 6MI/d ion exchange plant for treating nitrate only.

CAPEX, OPEX and NPV Values of Options

	Option 0	Option 1	Option 2	Option 3	Option 4	Option 5	Option 6
Description	Existing	New 11MId	New GAC	New	New 14MLD	New 19MLD	New 6.5MLD
-	(Normalised)	IONEX Plant	Plant	IONEX/GAC	IONEX Plant	IONEX Plant	IONEX Plant
				Plant			
OUTPUT	3.2	11	11	11	14	19	11
Barr Beacon (Ml/d)		11	11	11	14	19	11
Hopwas (MI/d)	3.2						
CAPEX (£M)		5.09	4.60	6.30	5.75	8.54	4.53
OPEX (£k/yr)	157	487	353	465	575	738	442
Power (treatment) (£/Ml)	41.4	34.9	32.1	33.4	25.2	18.6	32.1
Power (HL Barr Beacon) (£/MI)	42.4	42.4	42.4	42.4	42.4	42.4	42.4
Power (HL Hopwas) (£/MI)	10.5	10.5	10.5	10.5	10.5	10.5	10.5
Chemicals (£/MI)	71.9	38.3	5.5	31.6	39.0	39.5	31.6
Effluent (£/Ml)	10.7	5.7	0.1	3.9	5.8	5.9	3.9
Carbon (£/MI)			7.7	4.4			
OPEX(£/MI)	134.5	121.3	87.8	115.7	112.4	106.4	110.0
NPV (£M)		8.87	6.85	9.83	10.49	13.11	9.14

Sandhills WTW, Shenstone WTW, and Pipe Hill WTW

Option Combinations

Comparison of costs of new nitrate plant at Pipe Hill WTW against existing plant costs.

Scenario 0 Existing nitrate plant at Pipe Hill WTW (3M/ld) and Seedy Mills WTW (53Ml/d) supplying Barr Beacon and Hopwas reservoirs.

- Scenario 1 New replacement nitrate plant at Pipe Hill WTW (3Ml/d). Seedy Mills WTW (53Ml/d) supplying Barr Beacon and Hopwas reservoirs.
- Scenario 2 New nitrate plant at Pipe Hill WTW (11Ml/d) treating both nitrate and chlorthal. Seedy Mills WTW (45Ml/d supplying Barr Beacon and Hopwas reservoirs.

Comparison of costs of new run to waste facility at Sandhills WTW.

Scenario 2a New nitrate plant at Pipe Hill WTW (11Ml/d) treating both nitrate and chlorthal.

Seedy Mills WTW (45Ml/d) supplying Barr Beacon and Hopwas reservoirs.

Scenario 3 New nitrate plant at Pipe Hill WTW (11MLD) treating both nitrate and chlorthal.

New run to waste faciliity at Sandhills WTW providing 3MI/d argumentation flow.

Seedy Mills WTW (45Ml/d) supplying Barr Beacon and Hopwas reservoirs.

Comparison of cost of new nitrate plants at Pipe Hill, Sandhills and Shenstone WTW.

- Scenario 4 New nitrate plants at Pipe Hill WTW (11M/ld), Sandhills WTW (3Ml/d) and Shenstone (5Ml/d) treating both nitrate and chlorthal.
- **Scenario 5** New pumping station at Sandhills WTW.

New nitrate plant at Pipe Hill WTW (14MI/d) treating water from Sandhills borehole.

New nitrate plant at Shenstone WTW (5MI/d) treating both nitrate and chlorthal.

Scenario 6 New nitrate plant at Pipe Hill WTW (19MI/d)) treating water from Sandhills and Shenstone boreholes for nitrate and chlorthal.

Saving from blending with treated water from Seedy Mill WTW.

- **Scenario 7** New nitrate plants at Pipe Hill WTW (11M/ld and Shenstone (5Ml/d) treating both nitrate and chlorthal. An argumentation flow (3Ml/d) provided at Sandhills WTW.
- **Scenario 8** New nitrate plants at Pipe Hill WTW (11M/ld) for treating chlorthal and nitrate.

New treatment plant at Shenstone with TCE treatment (air stripping) and disinfection. (Nitrates and Chlorthal controlled by blending with either Pipe Hill or Seedy Mill treated water.)

An argumentation flow (3MI/d) provided at Sandhills WTW.

Scenario 9 New nitrate plant at Pipe Hill WTW (11M/ld) for treating chlorthal and nitrate.

New treatment plant at Shenstone WTW with GAC adsorbers for TCE and chlorthal treatment. Nitrates controlled by blending with either Pipe Hill or Seedy Mill treated water.

Seedy Mill WTW

Seedy Mill WTW

Normalised OPEX Costs

	Seedy Mill	Seedy Mill
Description	Conventional surface water treatment	Conventional surface water treatment
OUTPUT	20	20
Barr Beacon (Ml/d)	20	
Hopwas (MI/d)		20
CAPEX (£M)		
OPEX (£k/yr)	603	235
Power (treatment) (£/Ml)	6	6
Power (HL Barr Beacon) (£/Ml)	51.4	51.4
Power (HL Hopwas) (£/MI)	16.9	16.9
Chemicals (£/MI)	24	24
Effluent (£/Ml)		
Carbon (£/Ml)		
OPEX(£/MI)	82.6	32.1

Shenstone WTW/Pipe Hill WTW/Sandhill WTW

Comparison against existing operation Scenario 0

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description		Existing IONEX Plant		Conventional surface water treatment	
OUTPUT		3.2		53	56.2
Barr Beacon (Ml/d)				34	34
Hopwas (MI/d)		3.2		19	22.2
CAPEX (£M)					
OPEX (£k/yr)		157		1342	1499
Power (treatment) (£/Ml)		41.4		6	
Power (HL Barr Beacon) (£/Ml)		42.4		51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/Ml)		71.9		24	
Effluent (£/Ml)		10.7			
Carbon (£/Ml)					
OPEX(£/MI)		134.5		69.4	73.1

Comparison against existing operation

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description		New 6.5MI/d IONEX Plant		Conventional surface water treatment	
OUTPUT		3.2		53	56.2
Barr Beacon (Ml/d)				34	34
Hopwas (MI/d)		3.2		19	22.2
CAPEX (£M)		4.53			4.5
OPEX (£k/yr)		91		1342	1433
Power (treatment) (£/Ml)		32.1		6	
Power (HL Barr Beacon) (£/MI)		42.4		51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/Ml)		31.6		24	
Effluent (£/Ml)		3.9			
Carbon (£/Ml)					
OPEX(£/MI)		78.1		69.4	69.9

Comparison against existing operation

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description		New 11MI/d IONEX Plant		Conventional surface water treatment	
OUTPUT		11		45.2	56.2
Barr Beacon (Ml/d)		0		34.2	34.2
Hopwas (MI/d)		11		11	22
CAPEX (£M)		5.09			5.1
OPEX (£k/yr)		359		1210	1569
Power (treatment) (£/Ml)		34.9		6	
Power (HL Barr Beacon) (£/MI)		42.4		51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/MI)		38.3		24	
Effluent (£/Ml)		5.7			
Carbon (£/Ml)					
OPEX(£/MI)		89.4		73.3	76.5

Comparison against existing operation

	Scenario 0	Scenario 1	Scenario 2
Description	Present operation	New nitrate only	New chlorthal and
		plant at Pipe Hill	nitrate plant at Pipe Hill WTW
OUTPUT (MI/d)	56.2	56.2	56.2
Sandhill WTW	0	0	0
Shenstone WTW	0	0	0
Pipe Hill WTW	3.2	3.2	11
Seedy Mill WTW	53	53	45.2
Argumentation Flow			
CAPEX (£M)	0	4.53	5.09
OPEX (£k/yr)	1499	1433	1569
OPEX(£/MI)	73.1	69.9	76.5

Comparison against existing operation

Conclusions

 Even with an updated ion exchange plant at Pipe Hill WTW treating nitrate only, OPEX costs are higher than Seedy Mill WTW.

Cost of argumentation flow at Sandhills WTW Scenario 2a

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description		New 11MI/d IONEX Plant		Conventional surface water treatment	
OUTPUT		11		45.2	56.2
Barr Beacon (Ml/d)		11		23.2	34.2
Hopwas (MI/d)		0		22	22
CAPEX (£M)		5.09			5.1
OPEX (£k/yr)		487		1071	1558
Power (treatment) (£/Ml)		34.9		6	
Power (HL Barr Beacon) (£/MI)		42.4		51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/MI)		38.3		24	
Effluent (£/Ml)		5.7			
Carbon (£/Ml)					
OPEX(£/MI)		121.3		64.9	76.0

Cost of argumentation flow at Sandhills WTW

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description		New 11MI/d IONEX Plant	New 3MI/d run to waste	Conventional surface water treatment	
OUTPUT		11	0	45.2	56.2
Barr Beacon (Ml/d)		11		23.2	34.2
Hopwas (MI/d)				22	22
CAPEX (£M)		5.09	0.416		5.5
OPEX (£k/yr)		487	22	1071	1580
Power (treatment) (£/Ml)		34.9	19.8	6	
Power (HL Barr Beacon) (£/MI)		42.4		51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/MI)		38.3		24	
Effluent (£/MI)		5.7			
Carbon (£/Ml)					
OPEX(£/MI)		121.3		64.9	77.0

Cost of argumentation flow at Sandhills WTW

	Scenario 2	Scenario 3
Description	New chlorthal and nitrate plant at Pipe Hill WTW	New chlorthal and nitrate plant at Pipe Hill WTW. New run to waste facility at Sandhills
OUTPUT (MI/d)	56.2	56.2
Sandhill WTW	0	0
Shenstone WTW	0	0
Pipe Hill WTW	11	11
Seedy Mill WTW	45.2	45.2
Argumentation Flow	0	3
CAPEX (£M)	5.09	5.51
OPEX (£k/yr)	1558	1580
OPEX(£/MI)	76.0	77.0

Cost of treating water at different sites Scenario 4

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description	New 6MI/d IONEX Plant	New 11MI/d IONEX Plant	New 3MI/d IONEX Plant + 3MI/d waste	Conventional surface water treatment	
OUTPUT	5	11	3	37.2	56.2
Barr Beacon (Ml/d)	5	11	3	15.2	34.2
Hopwas (MI/d)				22	22
CAPEX (£M)	5.19	5.09	4.76		15.0
OPEX (£k/yr)	190	487	161	833	1671
Power (treatment) (£/Ml)	34.7	34.9	63.0	6	
Power (HL Barr Beacon) (£/Ml)	46.1	42.4	38.8	51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/Ml)	20	38.3	40.0	24	
Effluent (£/Ml)	3.4	5.7	5.6		
Carbon (£/Ml)					
OPEX(£/MI)	104.2	121.3	147.4	61.3	81.5

Cost of treating water at different sites Scenario 5

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description	New 5MI/d IONEX Plant	New 14MI/d IONEX Plant	New 3MI/d PS + 3MI/d waste	Conventional surface water treatment	
OUTPUT	5	14	0	37.2	56.2
Barr Beacon (Ml/d)	5	14		15.2	34.2
Hopwas (MI/d)				22	22
CAPEX (£M)	5.19	5.75	0.7		11.6
OPEX (£k/yr)	190	557	42	833	1621
Power (treatment) (£/Ml)	34.7	25.2	37.9	6	
Power (HL Barr Beacon) (£/MI)	46.1	42.4		51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/Ml)	20	39.0		24	
Effluent (£/Ml)	3.4	5.8			
Carbon (£/Ml)					
OPEX(£/MI)	104.2	11	7.2	61.3	79.0

Cost of treating water at different sites

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description	New BH, stripping tower and PS	New 19MI/d IONEX Plant	New 3MI/d PS + 3MI/d waste	Conventional surface water treatment	
OUTPUT	0	19	0	37.2	56.2
Barr Beacon (Ml/d)		19		15.2	34.2
Hopwas (MI/d)				22	22
CAPEX (£M)	4.18	8.54	0.7		13.4
OPEX (£k/yr)	64	716	42	833	1654
Power (treatment) (£/Ml)	31.4	18.6	37.9	6	
Power (HL Barr Beacon) (£/Ml)		42.4		51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/Ml)		39.5		24	
Effluent (£/Ml)		5.9			
Carbon (£/Ml)					
OPEX(£/MI)		109.2		61.3	80.6

Cost of treating water at different sites

	Scenario 4	Scenario 5	Scenario 6
Description	New IONEX plant at Sandhills, Shenstone and Pipe Hill WTW	New IONEX plant at Shenstone and Pipe Hill WTW	New IONEX plant at Pipe Hill WTW
OUTPUT (MI/d)	56.2	56.2	56.2
Sandhill WTW	3	0	0
Shenstone WTW	5	5	0
Pipe Hill WTW	11	14	19
Seedy Mill WTW	37.2	37.2	37.2
Argumentation Flow	3	3	3
CAPEX (£M)	15.04	11.64	13.42
OPEX (£k/yr)	1671	1621	1654
OPEX(£/MI)	81.5	79.0	80.6

Cost of treating water at different sites

Conclusions

- Treatment of water from Sandhills borehole at Pipe Hill WTW could generate some savings from efficiencies of a single large works.
- A costs for a new 7km pipe from Shenstone WTW to Pipe Hill WTW and an upgraded/new booster pump station significantly increase the CAPEX of a single 19Ml/d works.

Savings from blending

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description	New 6MI/d IONEX Plant	New 11MI/d IONEX Plant	New 3MI/d run to waste	Conventional surface water treatment	
OUTPUT	5	11	0	40.2	56.2
Barr Beacon (Ml/d)	5	11		18.2	34.2
Hopwas (MI/d)				22	22
CAPEX (£M)	5.19	5.09	0.7		11.0
OPEX (£k/yr)	190	487	42	922	1641
Power (treatment) (£/Ml)	34.7	34.9	37.9	6	
Power (HL Barr Beacon) (£/Ml)	46.1	42.4		51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/Ml)	20	38.3		24	
Effluent (£/Ml)	3.4	5.7			
Carbon (£/Ml)					
OPEX(£/MI)	104.2	121.3		62.8	80.0

Savings from blending

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description	TCE removal and disinfection	New 11MI/d IONEX Plant	New 3MI/d run to waste	Conventional surface water treatment	
OUTPUT	5	11	0	40.2	56.2
Barr Beacon (Ml/d)	5	11		18.2	34.2
Hopwas (MI/d)				22	22
CAPEX (£M)	2.81	5.09	0.416		8.3
OPEX (£k/yr)	149	487	22	922	1580
Power (treatment) (£/Ml)	30.1	34.9	19.8	6	
Power (HL Barr Beacon) (£/Ml)	46.1	42.4		51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/Ml)	5.5	38.3		24	
Effluent (£/Ml)	0	5.7			
Carbon (£/Ml)					
OPEX(£/MI)	81.7	121.3		62.8	77.0

Savings from blending

	Shenstone	Pipe Hill	Sandhills	Seedy Mill	Total
Description	New 5MLD GAC Plant	New 11MI/d IONEX Plant	New 3MI/d run to waste	Conventional surface water treatment	
OUTPUT	5	11	0	40.2	56.2
Barr Beacon (Ml/d)	5	11		18.2	34.2
Hopwas (MI/d)				22	22
CAPEX (£M)	3.94	5.09	0.416		9.4
OPEX (£k/yr)	164	487	22	922	1595
Power (treatment) (£/Ml)	29.1	34.9	19.8	6	
Power (HL Barr Beacon) (£/Ml)	46.1	42.4		51.4	
Power (HL Hopwas) (£/Ml)		10.5		16.9	
Chemicals (£/Ml)	5.5	38.3		24	
Effluent (£/Ml)	0.2	5.7			
Carbon (£/Ml)	9				
OPEX(£/MI)	89.9	121.3		62.8	77.8

Savings from blending

	Scenario 7	Scenario 8	Scenario 9
Description	New IONEX plant	New TCE plant at	New GAC plant at
	at Shenstone and	Shenstone and	Shenstone and
	Pipe Hill WTW	IONEX plant Pipe	IONEX plant Pipe
		Hill WTW	Hill WTW
OUTPUT (MI/d)	56.2	56.2	56.2
Sandhill WTW	0	0	0
Shenstone WTW	5	5	5
Pipe Hill WTW	11	11	11
Seedy Mill WTW	40.2	40.2	40.2
Argumentation Flow	3	3	3
CAPEX (£M)	11.0	8.3	9.4
OPEX (£k/yr)	1641	1580	1595
OPEX(£/MI)	80.0	77.0	77.8

Shenstone WTW/Pipe Hill WTW/Sandhill WTW Savings from blending

Conclusions

- Blending Shenstone water at Shenstone WTW can generate savings if a sufficient supply of suitable blending water is available.
- Greater treated water quality security could be gained from a GAC plant at Shenstone WTW.

Discussion

Discussion

- Required resilience.
- Affordability.
- Operability.

Information gaps and future testing requirements.

Information gaps

- Raw Water Quality Information.
 - Slade Heath WTW.
 - Sandhills WTW.
 - Shenstone WTW.
- GAC.
 - Certainty on prediction of regeneration frequency.
 - Performance of regenerated carbon.
 - Tri-chloroethane removal at Shenstone WTW.
- Nitrate selective resin
 - Performance with elevated level of chlorthal.
 - Optimum regeneration regime.
 - On-line monitoring possibilities for chlorthal (UVT?).

Chlorthal Treatment Options Review 14th May 2015